Abstract

The emergence and expansion of animal life on Earth represents a dramatic shift in the structure and complexity of the biosphere. A lack of firm constraints on surface oxygen levels during the mid-Proterozoic has resulted in heated debate as to whether the rise and earliest diversification of animals was directly linked to a change in environmental oxygen levels or, instead, simply reflects the timing of innovations in gene expression and developmental regulation and was independent of a direct environmental trigger. Here, we present chromium (Cr) isotope data from marine black shales that provide evidence for minimal Cr oxidation throughout the mid-Proterozoic leading up to the diversification of eukaryotes and the rise of animals during the late Neoproterozoic. This observation requires very low background oxygen levels (<1% of present atmospheric levels). Accepting previously proposed estimates of p O2 levels needed to induce Cr isotope fractionation, our data provide support for the persistence of an Earth system in which baseline atmospheric p O2 would have been low enough to inhibit the diversification of animals until ca. 800 Ma. More generally, evidence for a delayed rise of atmospheric oxygen strongly suggests that environmental factors have played a fundamental role in controlling the emergence and expansion of complex life on Earth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call