Abstract

Sexually transmitted infections (STIs) with Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis are among the most common infectious diseases in the United States, disproportionately affecting young women. Because a significant portion of the infections present no symptoms, infection control relies primarily on disease screening. However, universal STI screening in a large population can be expensive. In this paper, we propose a semiparametric model-based screening algorithm. The model quantifies organism-specific infection risks in individual subjects and accounts for the within-subject interdependence of the infection outcomes of different organisms and the serial correlations among the repeated assessments of the same organism. Bivariate thin-plate regression spline surfaces are incorporated to depict the concurrent influences of age and sexual partners on infection acquisition. Model parameters are estimated by using a penalized likelihood method. For inference, we develop a likelihood-based resampling procedure to compare the bivariate effect surfaces across outcomes. Simulation studies are conducted to evaluate the model fitting performance. A screening algorithm is developed using data collected from an epidemiological study of young women at increased risk of STIs. We present evidence that the three organisms have distinct age and partner effect patterns; for C. trachomatis, the partner effect is more pronounced in younger adolescents. Predictive performance of the proposed screening algorithm is assessed through a receiver operating characteristic analysis. We show that the model-based screening algorithm has excellent accuracy in identifying individuals at increased risk, and thus can be used to assist STI screening in clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.