Abstract
Oxygen concentrations in the bottom waters of the Lower St. Lawrence estuary (LSLE) decreased from 125 µmol L™1 (37.7% saturation) in the 1930s to an average of 65 µmol L™1 (20.7% saturation) for the 1984-2003 period. A concurrent 1.65°C warming of the bottom water from the 1930s to the 1980s suggests that changes in the relative proportions of cold, fresh, oxygen-rich Labrador Current Water (LCW) and warm, salty, oxygen-poor North Atlantic Central Water (NACW) in the water mass entering the Laurentian Channel probably played a role in the oxygen depletion. We estimate that about one half to two thirds of the oxygen loss in the bottom waters of the LSLE can be attributed to a decreased proportion of LCW. This leaves between one third and one half of the oxygen decrease to be explained by causes other than changes in water mass composition. An increase in the along-channel oxygen gradient from Cabot Strait to the LSLE over the past decades, combined with data from sediment cores, suggests that increased sediment oxygen demand may be partly responsible for the remainder of the oxygen decline. In July 2003, approximately 1,300 km2 of seafloor in the LSLE was bathed in hypoxic water (<62.5 µmol L−1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.