Abstract
(Aim) COVID-19 pandemic causes numerous death tolls till now. Chest CT is an effective imaging sensor system to make accurate diagnosis. (Method) This article proposed a novel seven layer convolutional neural network based smart diagnosis model for COVID-19 diagnosis (7L-CNN-CD). We proposed a 14-way data augmentation to enhance the training set, and introduced stochastic pooling to replace traditional pooling methods. (Results) The 10 runs of 10-fold cross validation experiment show that our 7L-CNN-CD approach achieves a sensitivity of 94.44±0.73, a specificity of 93.63±1.60, and an accuracy of 94.03±0.80. (Conclusion) Our proposed 7L-CNN-CD is effective in diagnosing COVID-19 in chest CT images. It gives better performance than several state-of-the-art algorithms. The data augmentation and stochastic pooling methods are proven to be effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.