Abstract

Processing natural language at the sentence level suffers from a sparse-feature problem caused by the limited number of words in a sentence. In this article, a Set Space Model (SSM) is proposed to utilize sentence information, the main idea being that, depending on structural characteristics or functional principles of linguistics, features in a sentence can be grouped into different sets. Feature calculus can then operate on the grouped features and capture structural information using external knowledge. The authors implement this method in a traditional information extraction task, with results showing significant and constant improvement in general information extraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.