Abstract
The rat K and T kininogen genes show different modes of mRNA production. The K gene encodes two distinct mRNAs for high molecular weight (HMW) and low molecular weight (LMW) kininogens. These two mRNAs are generated by differential usage of the 3'-terminal exon (LMW exon) and the exon next to and upstream from the LMW exon (HMW exon) through alternative splicing and polyadenylation. In contrast, the T gene generates one mRNA by using selectively the LMW exon, although the T gene is extremely homologous to the K gene. In this study, we constructed a series of chimeric kininogen genes by not only exchanging equivalent restriction fragments of the two genes but also replacing nucleotides that differ between the two genes. We then examined the sequences and the mechanisms governing the different expression patterns of the two genes by transfecting the chimeric genes into heterologous COS cells. The results indicated that the different expression patterns of the K and T genes are governed by two separate internal sequences of the HMW and LMW exons. The internal HMW sequence contains a set of five repetitive sequences, and these repetitive sequences are highly complementary to the 5' portion of U1 snRNA. Furthermore, the nucleotide differences in the U1 snRNA-complementary sequences between the K and T genes have marked effects on the relative formation of the HMW and LMW mRNAs; this indicates that the repetitive sequences complementary to U1 snRNA play a crucial role in determining the relative expression of the two mRNAs. Based on these findings, we discuss a novel mechanism for alternative RNA processing, in which splicing efficiency is controlled by the interaction of U1 small nuclear ribonucleoproteins and the U1 snRNA-complementary repetitive sequences of the kininogen pre-mRNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.