Abstract

A set of cracks lying along the interface of two dissimilar isotropic materials under a mixed-mode loading is considered. The interface cracks are assumed to be fully open, partially closed with frictionless contact zones and fully closed. The problem is reduced to a homogeneous combined Dirichlet-Riemann boundary value problem, which is solved in closed form. A set of transcendental equations for the determination of the contact zone lengths for an arbitrary number of cracks and the closed-form expressions for the stresses and the displacement jumps on the material interface are obtained. A single crack with one and two contact zones has been considered in details. An explicit set of two transcendental equations for the relative contact zone length and closed-form expressions for the stress intensity factors at the crack tips are obtained for both cases. The contact zone lengths and the stress intensity factors are investigated numerically for different material pairs under different values of the loading, and a comparison of the results for a crack with one and two contact zones is carried out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call