Abstract

In C. elegans, miRNAs are genetic biomarkers of aging. Similarly, multiple miRNAs are differentially expressed between younger and older persons, suggesting that miRNA-regulated biological mechanisms affecting aging are evolutionarily conserved. Previous human studies have not considered participants' lifespans, a key factor in identifying biomarkers of aging. Using PCR arrays, we measured miRNA levels from serum samples obtained longitudinally at ages 50, 55, and 60 from 16 non-Hispanic males who had documented lifespans from 58 to 92. Numerous miRNAs showed significant changes in expression levels. At age 50, 24 miRNAs were significantly upregulated, and 73 were significantly downregulated in the long-lived subgroup (76-92 years) as compared with the short-lived subgroup (58-75 years). In long-lived participants, the most upregulated was miR-373-5p, while the most downregulated was miR-15b-5p. Longitudinally, significant Pearson correlations were observed between lifespan and expression of nine miRNAs (p value<0.05). Six of these nine miRNAs (miR-211-5p, 374a-5p, 340-3p, 376c-3p, 5095, 1225-3p) were also significantly up- or downregulated when comparing long-lived and short-lived participants. Twenty-four validated targets of these miRNAs encoded aging-associated proteins, including PARP1, IGF1R, and IGF2R. We propose that the expression profiles of the six miRNAs (miR-211-5p, 374a-5p, 340-3p, 376c-3p, 5095, and 1225-3p) may be useful biomarkers of aging.

Highlights

  • Biomarkers of aging are biological parameters that change in a predictable direction with aging in most individuals and, when assessed early in life, may predict subsequent longevity better than chronological age alone

  • In accordance with recent research that found a strong association between circulating miRNAs and human aging [22], our study suggests that circulating miRNAs are biomarkers of longevity

  • We conducted a pilot study of miRNAs as biomarkers of aging by analyzing miRNA expression in serum samples from a longitudinal human aging study

Read more

Summary

Introduction

Biomarkers of aging are biological parameters that change in a predictable direction with aging in most individuals and, when assessed early in life, may predict subsequent longevity better than chronological age alone. Because miRNAs and aging genetic pathways are conserved from nematodes to humans, an increasing number of human miRNA studies have been carried out over the past several years. These studies have shown differential abundance of multiple miRNAs in peripheral blood mononuclear cells (PBMCs) or serum/plasma when comparing younger and older adults [16,17,18,19,20,21].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call