Abstract

Noble metal has always been used as a preferred base for SERS substrate. However, the preparation cost of such materials is trully high. Therefore, many researchers have begun to search for succedanea which cost were lower. In this work, CsPbBr3@ZIF-8 was synthesized by in-situ reduction method and combined with graphene nanosheets to construct a SERS substrate. The SERS performance of this substrate could be further enhanced by the synergistic effect of perovskite quantum dots and graphene. Base on this material, a sensitive SERS strategy composed of CsPbBr3@ZIF-8@G, antibody, and Bradford method was developed for the quantitative determination of cardiac troponin I (cTnI) in human serum. It's worth noting that the sensitivity and accuracy of this method could approach the level of other SERS methods using noble metals. The “reverse”-SERS method could improve the uniformity and stability of detection platform obviously. The detection range of this method was 0.01–100 ng/mL, and the estimated detection of limit (LOD) was 4.7 pg/mL. The recovery rate of this method range was between 93.1 % and 104.8 %, and RSD range was between 4.47 % and 7.06 %.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call