Abstract

We report the synthesis and characterisation of a series of rare-earth mesoionic carbene complexes, [RE{N(SiMe3 )2 }3 {CN(Me)C(Me)N(Me)CH}] (3RE, RE=Sc, Ce, Pr, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), greatly expanding the limited library of f-block mesoionic carbene complexes. These complexes were prepared by treatment of the parent RE-triamides with an N-heterocyclic olefin (NHO), where an NHO backbone proton undergoes a formal 1,4-proton migration to the NHO-methylene group. For all RE(III) metals, as expected, quantum chemical calculations suggest only a σ-component to the metal-carbene bonding, in contrast to a previously reported uranium(III) congener where the 5f3 metal engages in a weak π-back-bond to the MIC. All complexes were characterised by static variable-temperature magnetic measurements, and dynamic magnetic measurements reveal that 3Dy and 3Er are field-induced single-molecule magnets (SMMs), with Ueff energy barriers of 35 and 128 K, respectively. Complex 3Dy is, as expected, a poorly performing SMM, but conversely 3Er performs unexpectedly well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call