Abstract
A series of pyrido[2,3-b]pyrazin-3(4H)-one based derivatives were designed as inhibitors of aldose reductase (ALR2), the enzyme which plays a key role in the development of diabetes complications as well as in the oxidative stress processes associated with diabetes and other pathologies. Most of the derivatives, having a substituted C2 aromatic group and a N4 acetic acid group on the core structure, were found to be potent and selective aldose reductase inhibitors with submicromolar IC50 values, and 9c was the most active with IC50 value 0.009 μM. Particularly, a number of the designed compounds bearing phenolic hydroxyl substituted C2-styryl side chain showed excellent not only in ALR2 inhibition but also in antioxidant, and among these 11i was proved to be the top one with an antioxidant ability even comparable to that of the well-known antioxidant Trolox. Structure-activity relationship and molecular docking studies highlighted the importance of phenolic hydroxyl substituents and vinyl spacer in C2 side chain of the scaffold for the construction of efficient and multifunctional ALR2 inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.