Abstract

The design of rural drinking water schemes consists of optimization of several network components like pipes, tanks, pumps and valves. The sizing and configuration of these network configurations need to be such that the water requirements are met while at the same time being cost efficient so as to be within government norms. We developed the JalTantra system to design such water distribution networks. The Integer Linear Program (ILP) model used in JalTantra and described in our previous work solved the problem optimally, but took a significant amount of time for larger networks—an hour for a network with 100 nodes. In this current work, we describe a series of three improvements of the model. We prove that these improvements result in tighter models, i.e. the set of points of linear relaxation is strictly smaller than the linear relaxation for the initial model. We test the series of three improved models along with the initial model over eight networks of various sizes and show a distinct improvement in performance. The 100-node network now takes only 49 s to solve. These changes have been implemented in JalTantra, resulting in a system that can solve the optimization of real world rural drinking water networks in a matter of seconds. The JalTantra system is free for use, and is available at https://www.cse.iitb.ac.in/jaltantra/.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.