Abstract

A series of fluorescent dyes (NapPAs) based on 4-phenylacetylene-1,8-naphthalimide were synthesized and characterized, whose conjugated structures were extended by the introduction of phenylethynyl. Furthermore, changes in the photophysical properties of the dyes when substituents with varying electron richness were introduced at the p-position of phenylacetylene were studied. The theoretical calculation of the dye molecules was carried out by B3LYP functional and 6-31G(d,p) basis set, and the effects of different substituents at the p-position of phenylacetylene on the electronic structure and photophysical properties of the dyes were studied by theoretical calculation results. Theoretical calculations provided a reliable means of predicting the properties of dyes, which could help in the design of more efficient and novel dyes. To verify the practicability of the dyes, two dyes with excellent photophysical properties (large Stokes shift, high polarity-viscosity sensitivity, good biocompatibility) were selected as fluorescent probes for visualization of LDs and two-color imaging of LDs and lysosomes. Cell imaging showed that NapPA-LDs and NapPA-LDs-Lyso serve as excellent imaging tools to monitor the dynamic changes, movements, and behaviors of LDs and lysosomes in real time. Notably, NapPA-LDs-Lyso held promise as a potential tool to study the interaction between LDs and lysosomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.