Abstract

A new serial dual-electrode detector for CE has been designed and fabricated for postcolumn reaction detection based on electrogenerated bromine. A coaxial postcolumn reactor was employed to introduce bromide reagent and facilitate the fabrication of upstream generation electrode by simply sputtering Pt film onto the outer surface of the separation capillary. Bromide introduced could be efficiently converted to bromine at this Pt film electrode and subsequently detected by the downstream Pt microdisk detection electrode. Analytes that react with bromine could be determined by the decrease of bromine reduction current at the downstream electrode resulting from the reaction between analytes and bromine. The effects of serial dual-electrode detector working conditions including electrode potentials, bromide flow rate, and bromide concentration on analytical performance were investigated using glutathione (GSH) and glutathione disulfide (GSSG) as test analytes. Under the optimal conditions, detection limits down to 0.16 μM for GSH and 0.14 μM for GSSG (S/N = 3) as well as linear working ranges of two orders of magnitude for GSH and GSSG were achieved. Furthermore, the separation efficiency obtained by our dual-electrode detector design was greatly improved compared with previous reported design. The developed method has been successfully applied to determine the GSH and GSSG impurity in commercial GSH supplement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.