Abstract

In this paper, we propose a serial dilution microfluidic chip which is able to generate logarithmic or linear step-wise concentrations. These concentrations were generated via adjustments in the flow rate of two converging fluids at the channel junctions of the ladder network. The desired dilution ratios are almost independent of the flow rate or diffusion length of molecules, as the dilution device is influenced only by the ratio of volumetric flow rates. Given a set of necessary dilution ratios, whether linear or logarithmic, a serial dilution chip can be constructed via the modification of a microfluidic resistance network. The design principle was suggested and both the logarithmic and linear dilution chips were fabricated in order to verify their performance in accordance with the fluorescence intensity. The diluted concentrations of a fluorescein solution in the microfluidic device evidenced relatively high linearity, and the cytotoxicity test of MCF-7 breast cancer cells via the logarithmic dilution chip was generally consistent with the results generated with manual dilution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.