Abstract
Summary We develop a specification test of predictive densities, based on the fact that the generalized residuals of correctly specified predictive density models are independent and identically distributed uniform. The proposed sequential test examines the hypotheses of serial independence and uniformity in two stages, wherein the first-stage test of serial independence is robust to violation of uniformity. The approach of the data-driven smooth test is employed to construct the test statistics. The asymptotic independence between the two stages facilitates proper control of the overall type I error of the sequential test. We derive the asymptotic null distribution of the test, which is free of nuisance parameters, and we establish its consistency. Monte Carlo simulations demonstrate excellent finite sample performance of the test. We apply this test to evaluate some commonly used models of stock returns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.