Abstract

Process optimization based on high-fidelity computer simulations or real experimentation is commonly expensive. Therefore, surrogate models are frequently used to reduce the computational or experimental cost. However, surrogate models need to achieve a maximum accuracy with a limited number of sampled points. Sequential sampling is a procedure in which sequentially surrogates are fitted and each surrogate defines the points that need to be sampled and used to fit the next model. For optimization purposes, points are sampled on regions of high potential for the optimal solutions. In this work, we first compared the effect of using different initial sets of points (experimental designs) in a sequential surrogate-based multiobjective optimization method. The optimization method is tested on five benchmark problems and the performance is quantified based on the total number of function evaluations and the quality of the final Pareto Front. Then an industrial applications on titanium welding is presented to show the use of the method. The case study is based on real experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.