Abstract
Data transmission over the mmWave in fifth-generation wireless networks aims to support very high speed wireless communications. A substantial increase in spectrum efficiency for mmWave transmission can be achieved by using advanced hybrid precoding, for which accurate channel state information is the key. Rather than estimating the entire channel matrix, directly estimating subspace information, which contains fewer parameters, does have enough information to design transceivers. However, the large channel use overhead and associated computational complexity in the existing channel subspace estimation techniques are major obstacles to deploy the subspace approach for channel estimation. In this paper, we propose a sequential two-stage subspace estimation method that can resolve the overhead issues and provide accurate subspace information. Utilizing a sequential method enables us to avoid manipulating the entire high-dimensional training signal, which greatly reduces the complexity. Specifically, in the first stage, the proposed method samples the columns of channel matrix to estimate its column subspace. Then, based on the obtained column subspace, it optimizes the training signals to estimate the row subspace. For a channel with $N_r$ receive antennas and $N_t$ transmit antennas, our analysis shows that the proposed technique only requires $O(N_t)$ channel uses, while providing a guarantee of subspace estimation accuracy. By theoretical analysis, it is shown that the similarity between the estimated subspace and the true subspace is linearly related to the signal-to-noise ratio (SNR), i.e., $O(\text{SNR})$, at high SNR, while quadratically related to the SNR, i.e., $O(\text{SNR}^2)$, at low SNR. Simulation results show that the proposed sequential subspace method can provide improved subspace accuracy, normalized mean squared error, and spectrum efficiency over existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.