Abstract
In this article, a globally convergent sequential quadratic programming (SQP) method is developed for multi-objective optimization problems with inequality type constraints. A feasible descent direction is obtained using a linear approximation of all objective functions as well as constraint functions. The sub-problem at every iteration of the sequence has feasible solution. A non-differentiable penalty function is used to deal with constraint violations. A descent sequence is generated which converges to a critical point under the Mangasarian-Fromovitz constraint qualification along with some other mild assumptions. The method is compared with a selection of existing methods on a suitable set of test problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.