Abstract
We present a sequential quadratic optimization (SQO) algorithm for nonlinear constrained optimization. The method attains all of the strong global and fast local convergence guarantees of classical SQO methods, but has the important additional feature that fast local convergence is guaranteed when the algorithm is employed to solve infeasible instances. A two-phase strategy, carefully constructed parameter updates, and a line search are employed to promote such convergence. The first phase subproblem determines the reduction that can be obtained in a local model of an infeasibility measure when the objective function is ignored. The second phase subproblem then seeks to minimize a local model of the objective while ensuring that the resulting search direction attains a reduction in the local model of the infeasibility measure that is proportional to that attained in the first phase. The subproblem formulations and parameter updates ensure that, near an optimal solution, the algorithm reduces to a classica...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.