Abstract

We present a trial design for sequential multiple assignment randomized trials (SMARTs) that use a tailoring function instead of a binary tailoring variable allowing for simultaneous development of the tailoring variable and estimation of dynamic treatment regimens (DTRs). We apply methods for developing DTRs from observational data: tree-based regression learning and Q-learning. We compare this to a balanced randomized SMART with equal re-randomization probabilities and a typical SMART design where re-randomization depends on a binary tailoring variable and DTRs are analyzed with weighted and replicated regression. This project addresses a gap in clinical trial methodology by presenting SMARTs where second stage treatment is based on a continuous outcome removing the need for a binary tailoring variable. We demonstrate that data from a SMART using a tailoring function can be used to efficiently estimate DTRs and is more flexible under varying scenarios than a SMART using a tailoring variable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.