Abstract

An observer for a nonlinear system may be required to satisfy multiple performance criteria such as minimum convergence rate and disturbance rejection, in addition to asymptotic stability. In such cases, the observer can no longer be designed using a linear matrix inequality. A bilinear matrix inequality (BMI) is needed instead and involves a non-separable product of the observer gain matrices and the Lyapunov positive definite matrix. This paper develops a technique to solve a BMI for such a multi-objective observer design problem. The BMI design condition is transformed into an eigenvalue problem and a convex-concave based sequential linear matrix inequality (LMI) optimization method is used to find a feasible solution to the BMI. The developed observer design method is applied to a robust automotive slip angle estimation problem, where the L2 gain from the disturbance to the observer error is restricted be lower than 0.2 and the estimated states converges to the neighborhood of the real states within 0.3 s in the presence of uncertain vehicle dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.