Abstract
Identification of dynamic networks in prediction error setting often requires the solution of a non-convex optimization problem, which can be difficult to solve especially for large-scale systems. Focusing on ARMAX models of dynamic networks, we instead employ a method based on a sequence of least-squares steps. For single-input single-output models, we show that the method is equivalent to the recently developed Weighted Null Space Fitting, and, drawing from the analysis of that method, we conjecture that the proposed method is both consistent as well as asymptotically efficient under suitable assumptions. Simulations indicate that the sequential least squares estimates can be of high quality even for short data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.