Abstract
This article presents a sequential learning algorithm for function approximation and time-series prediction using a minimal radial basis function neural network (RBFNN). The algorithm combines the growth criterion of the resource-allocating network (RAN) of Platt (1991) with a pruning strategy based on the relative contribution of each hidden unit to the overall network output. The resulting network leads toward a minimal topology for the RBFNN. The performance of the algorithm is compared with RAN and the enhanced RAN algorithm of Kadirkamanathan and Niranjan (1993) for the following benchmark problems: (1) hearta from the benchmark problems database PROBEN1, (2) Hermite polynomial, and (3) Mackey-Glass chaotic time series. For these problems, the proposed algorithm is shown to realize RBFNNs with far fewer hidden neurons with better or same accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.