Abstract

A sequential procedure is given for deciding to which of $k$ non-overlapping intervals the unknown mean $\theta$ belongs which satisfies the requirement that the probability of making an incorrect decision is less than some preassigned value $\alpha$. The sequential procedure is worked out explicitly for the following two cases: (1) when $\theta$ is the mean of a normal distribution with a known variance, and (2) when $\theta$ is the mean of a normal distribution with an unknown variance. A brief discussion is also given of a related but apparently new problem, to find a sequential procedure which will simultaneously select one of the $k$ intervals and also yield a confidence interval for $\theta$ of a specified width.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.