Abstract

In a recent paper, Herbelin developed a calculus dPA$^\omega$ in which constructive proofs for the axioms of countable and dependent choices could be derived via the encoding of a proof of countable universal quantification as a stream of it components. However, the property of normalization (and therefore the one of soundness) was only conjectured. The difficulty for the proof of normalization is due to the simultaneous presence of dependent dependent types (for the constructive part of the choice), of control operators (for classical logic), of coinductive objects (to encode functions of type $N\rightarrow A$ into streams $(a_0,a_1,\ldots)$) and of lazy evaluation with sharing (for these coinductive objects).Building on previous works, we introduce in this paper a variant of dPA$^\omega$ presented as a sequent calculus. On the one hand, we take advantage of a variant of Krivine classical realizability we developed to prove the normalization of classical call-by-need. On the other hand, we benefit of dL, a classical sequent calculus with dependent types in which type safety is ensured using delimited continuations together with a syntactic restriction. By combining the techniques developed in these papers, we manage to define a realizability interpretation {\`a} la Krivine of our calculus that allows us to prove normalization and soundness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.