Abstract

Train scheduling is a complex and time consuming task of vital importance. To schedule trains more accurately and efficiently than permitted by current techniques a novel hybrid job shop approach has been proposed and implemented. Unique characteristics of train scheduling are first incorporated into a disjunctive graph model of train operations. A constructive algorithm that utilises this model is then developed. The constructive algorithm is a general procedure that constructs a schedule using insertion, backtracking and dynamic route selection mechanisms. It provides a significant search capability and is valid for any objective criteria. Simulated Annealing and Local Search meta-heuristic improvement algorithms are also adapted and extended. An important feature of these approaches is a new compound perturbation operator that consists of many unitary moves that allows trains to be shifted feasibly and more easily within the solution. A numerical investigation and case study is provided and demonstrates that high quality solutions are obtainable on real sized applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.