Abstract
De-novo protein design explores the untapped sequence space that is otherwise less discovered during the evolutionary process. This necessitates an efficient sequence space search engine for effective convergence in computational protein design. We propose a greedy simulated annealing-based Monte-Carlo parallel search algorithm for better sequence-structure compatibility probing in protein design. The guidance provided by the evolutionary profile, the greedy approach, and the cooling schedule adopted in the Monte Carlo simulation ensures sufficient exploration and exploitation of the search space leading to faster convergence. On evaluating the proposed algorithm, we find that a dataset of 76 target scaffolds report an average root-mean-square-deviation (RMSD) of 1.07 Å and an average TM-Score of 0.93 with the modeled designed protein sequences. High sequence recapitulation of 48.7% (59.4%) observed in the design sequences for all (hydrophobic) solvent-inaccessible residues again establish the goodness of the proposed algorithm. A high (93.4%) intra-group recapitulation of hydrophobic residues in the solvent-inaccessible region indicates that the proposed protein design algorithm preserves the core residues in the protein and provides alternative residue combinations in the solvent-accessible regions of the target protein. Furthermore, a COFACTOR-based protein functional analysis shows that the design sequences exhibit altered molecular functionality and introduce new molecular functions compared to the target scaffolds. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.