Abstract

Due to the low-latency and high-reliability requirements of 5G, low-complexity node-based successive cancellation list (SCL) decoding has received considerable attention for use in 5G communications systems. By identifying special constituent codes in the decoding tree and immediately decoding these, node-based SCL decoding provides a significant reduction in decoding latency compared to conventional SCL decoding. However, while there exists many types of nodes, the current node-based SCL decoders are limited by the lack of a more generalized node that can efficiently decode a larger number of different constituent codes to further reduce the decoding time. In this paper, we extend a recent generalized node, the sequence repetition (SR) node, to SCL decoding, and describe the first implementation of an SR-List decoder. By merging certain SR-List decoding operations and applying various optimizations for 5G New Radio (NR) polar codes, our optimized SR-List decoding algorithm increases the throughput by almost <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\bm {2\times }$</tex-math></inline-formula> compared to a similar state-of-the-art node-based SCL decoder. We also present our hardware implementation of the optimized SR-List decoding algorithm which supports all 5G NR polar codes. Synthesis results show that our SR-List decoder can achieve a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$2.94 \,\mathrm{Gbps}$</tex-math></inline-formula> throughput and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$6.70 \,\mathrm{Gbps}\mathrm{m}^{-1}\,\mathrm{m}^{2}\,$</tex-math></inline-formula> area efficiency for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\bm {L=8}$</tex-math></inline-formula> .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call