Abstract

The exact solution is derived for a stochastic optimal control problem involving a linear stochastic plant, quadratic costs, and nonlinear, nongaussian observations. The observations are in the form of a point process in which each point has both a temporal and a spatial coordinate. The state of the stochastic plant influences the intensity of the observed time-space point process. The solution to this dual control problem can be realized with a separated estimator-controller in which the estimator is nonlinear, mean-square optimal, and finite dimensional, and the controller is the certainty equivalent linear controller. Motivation for the stochastic optimal control problem studied here is given in terms of position sensing and tracking for quantum-limited optical communication problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.