Abstract

Closed-form solutions to differential eigenvalue problems associated with natural conservative systems, albeit self-adjoint, can be obtained in only a limited number of cases. Approximate solutions generally require spatial discretization, which amounts to approximating the differential eigenvalue problem by an algebraic eigenvalue problem. If the discretization process is carried out by the Rayleigh-Ritz method in conjunction with the variational approach, then the approximate eigenvalues can be characterized by means of the Courant and Fischer maximin theorem and the separation theorem. The latter theorem can be used to demonstrate the convergence of the approximate eigenvalues thus derived to the actual eigenvalues. This paper develops a maximin theorem and a separation theorem for discretized gyroscopic conservative systems, and provides a numerical illustration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call