Abstract
In recent years, the new coronavirus COVID-19 has brought great disaster and loss to the world and is still spreading around the world. The situation in China is generally well controlled, and the lockdown has been removed, but the comments and messages about the epidemic persist online. For people working and living normally in China, their attitudes and views toward COVID-19 directly reflect the current situation of the pandemic. This paper collected Chinese microblogs, forums, and online comments, identified the latest comments about COVID-19, and conducted a sentiment analysis of them. Specifically, we proposed a new sentiment analysis method that integrated the semantics of words with the text analyzed. Different from the traditional sentiment analysis method which only relied on sentiment words, the proposed method extended the semantic concepts of affective words by integrating the semantic conceptual information about the affective words from the context of the comments and thus, provided information to support the final judgment of the affective opinions. The proposed approach incorporated the part-of-speech embedding information along with word embedding and relies on semantic concepts to enhance the emotional expression of words in context. The experimental results showed that by integrating the semantics of words, the accuracy of sentiment analysis is substantially improved, and it also reflected that different semantics of the same word have different influences on sentiment analysis. On several benchmark datasets, there was a 3–6% improvement in accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.