Abstract

CMOS technology improvement allows to increase the number of cores integrated on a single chip and makes Network-on-Chips (NoCs) a key component from the performance and reliability standpoints. Unfortunately, continuous scaling of CMOS technology poses severe concerns regarding failure mechanisms such as NBTI and stress migration, that are crucial in achieving acceptable component lifetime. Process variation complicates the scenario, decreasing device lifetime and performance predictability during chip fabrication. This paper presents a novel sensor-less methodology to reduce the NBTI degradation in the on-chip network virtual channel buffers, considering process variation effects as well. Experimental validation is obtained using a cycle accurate simulator considering both real and synthetic traffic patterns. We compare our methodology to the best sensor-wise approach used as reference golden model. The proposed sensor-less strategy achieves results within 25% to the optimal sensor-wise methodology while this gap is reduced around 10% decreasing the number of virtual channels per input port. Moreover, our proposal can mitigate NBTI impact both in short and long run, since we recover both the most degraded VC (short run) as well as all the other VCs (long term).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.