Abstract
Deployment of photovoltaic (PV) systems has recently been encouraged for large-scale and small-scale businesses in order to meet the global green energy targets. However, one of the most significant hurdles that limits the spread of PV applications is the dust accumulated on the PV panels’ surfaces, especially in desert regions. Numerous studies sought the use of cameras, sensors, power datasets, and other detection elements to detect the dust on PV panels; however, these methods pose more maintenance, accuracy, and economic challenges. Therefore, this paper proposes an intelligent system to detect the dust level on the PV panels to optimally operate the attached dust cleaning units (DCUs). Unlike previous strategies, this study utilizes the expanded knowledge and collected data for solar irradiation and PV-generated power, along with the forecasted ambient temperature. An expert artificial intelligence (AI) computational system, adopted with the MATLAB platform, is utilized for a high level of data prediction and processing. The AI was used in this study in order to estimate the unprovided information, emulate the provided measurements, and accommodate more input/output data. The feasibility of the proposed system is investigated using actual field data during all possible weather conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.