Abstract

Human observer-based assessments of Cerebellar Ataxia (CA) are subjective and are often inadequate to track mild motor symptoms. This study examines the potential use of a comprehensive sensor-based approach for objective evaluation of CA in five domains (speech, upper limb, lower limb, gait and balance) through the instrumented versions of nine bedside neurological tests. A total of twenty-three participants diagnosed with CA to varying degrees and eleven healthy controls were recruited. Data was collected using wearable inertial sensors and Kinect camera. In our study, an optimal feature subset based on feature importance in the Random Forest classifier model demonstrated an impressive performance accuracy of 97% (F1 score = 95.2%) for CA-control discrimination. Our experimental findings also indicate that the Romberg test contributed most, followed by the peripheral tests, while the Gait test contributed least to the classification. Sensor-based approaches, therefore, have the potential to complement existing clinical assessment techniques, offering advantages in terms of consistency, objectivity and informed clinical decision-making.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call