Abstract

This paper addresses the problem of change detection for a quadcopter in the presence of wind disturbances. Different aspects of the quadcopter dynamics and various flight conditions have been investigated. First, the wind is modeled using the Dryden wind model as a sum of a low-frequent and a turbulent part. Since the closed-loop control can compensate for system changes and disturbances and the effect of the wind disturbance is significant, the residuals obtained from a standard simulation model can be misleading. Instead, a sensor-to-sensor submodel of the quadcopter is selected to detect a change in the payload using the Instrumental Variables (IV) cost function. It is shown that the mass variation can be detected using the IV cost function in different flight scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.