Abstract

Pectus carinatum (PC) presents itself as a protrusion on the chest wall of adolescent individuals. Current treatment for PC is performed with a Pectus carinatum orthosis (PCO) that applies a compressive force to the protrusion. While this treatment is accepted, the magnitude of compressive forces applied remains unknown leading to excessive or deficient compression. Although the need for this quantitative data is recognized, no studies reporting the data or methods are available. The purpose of this study was to design an accurate force measurement system (FMS) that could be incorporated into a PCO with minimal bulk. Components of the FMS were three-dimensional (3D)-printed and incorporated into an existing PCO design. The FMS was calibrated using a custom indenter that applied forces to the FMS in a controlled manner. Evaluation of the FMS on five human participants was also performed. A reliability measure of the FMS was calculated for analysis. The FMS was implemented into the PCO and able to withstand the applied forces. The calibration revealed an increase in load cell error with increased magnitude of applied force (mean error [SD] = 5.59 N [6.48 N]). Participants recruited to evaluate the FMS demonstrated reliable forces (R = 96%) with smaller standard deviations than those during the calibration. The FMS was shown capable of measuring PCO forces but requires further testing and improvement. This system is the foundational component in a wireless, minimalistic sensor system to provide real time force feedback to both the clinician and patient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.