Abstract

AbstractAn effective nanocomposite sensor for selective electroanalytical dopamine (DA) determination using overoxidized conducting polymer of poly‐1,5‐diaminonaphthalene (OPoly‐1,5‐DAN) functionalized graphene nanosheets (GNS) was achieved. The OPoly‐1,5‐DAN/GNS nanocomposite polymer was prepared via an electropolymerization of 1,5‐DAN on GNS/GCE after 7 cycles of potential scan (−0.2 V to +0.9 V), followed by an electrooveroxidation of the nanocomposite Poly‐1,5‐DAN/GNS by the potential cycle (0.0 V to +1.8 V) for 2 scans. The OPoly‐1,5‐DAN was effectively designed by GNS as a uniformly distribution of nanocomposite that caused more accumulations of analyte due to large electrocatalytic active positions created on electrode surface. The high specific and sensitive performance of the OPoly‐1,5‐DAN/GNS nanocomposite polymer was conducted to greater effective electrons transferring behavior for DA with copresent of vitamin C (VC). The stable and suitable formation of OPoly‐1,5‐DAN/GNS nanocomposite polymer showed rapid charge transport voltammogram and obvious electrocatalytic activity to DA and eliminated VC response. Moreover, the OPoly‐1,5‐DAN/GNS displays an excellent responses to DA determination with wide linear range (LR) 1.0–150 μM and lower detection limit (DL) 8.82±0.1 nM as comparing with other studies. Additionally, the excellent reproducibility of OPoly‐1,5‐DAN/GNS as well as long‐term stability indicated that it is an excellent and effective electrochemical DA sensor. Finally, the electroanalytical application of the OPoly‐1,5‐DAN/GNS nanocomposite polymer was employed for the electroanalysis of DA in human urine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.