Abstract
Orthorhombic Nb2O5 nanocrystalline films functionalized with [Ru(bpy)2(4,4′-(PO3H2)2bpy)]2+ were used as the photoanode in dye-sensitized photoelectrosynthesis cells (DSPEC) for hydrogen generation. A set of experiments to establish key properties—conduction band, trap state distribution, interfacial electron transfer dynamics, and DSPEC efficiency—were undertaken to develop a general protocol for future semiconductor evaluation and for comparison with other wide-band-gap semiconductors. We have found that, for a T-phase orthorhombic Nb2O5 nanocrystalline film, the conduction band potential is slightly positive (<0.1 eV), relative to that for anatase TiO2. Anatase TiO2 has a wide distribution of trap states including deep trap and band-tail trap states. Orthorhombic Nb2O5 is dominated by shallow band-tail trap states. Trap state distributions, conduction band energies, and interfacial barriers appear to contribute to a slower back electron transfer rate, lower injection yield on the nanosecond time scale, and a lower open-circuit voltage (Voc) for orthorhombic Nb2O5, compared to anatase TiO2. In an operating DSPEC, with the ethylenediaminetetraacetic tetra-anion (EDTA4–) added as a reductive scavenger, H2 quantum yield and photostability measurements show that Nb2O5 is comparable, but not superior, to TiO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.