Abstract

Shot peening process is largely used for surface treatment of metallic components with the aim of increasing surface toughness and extending fatigue life. The fatigue strength of the component can be improved by inducing compressive residual stress in the surface and subsurface layers by the shot peening process. Numerical simulation of the shot peening process is an important tool that is used to aid in understanding the effects of the process parameters on intended goal of attaining the optimum residual stress profile and maximum process gain. In this paper an elasto-plastic finite element model is used for the shot peening process. The process parameters that are varied in this analysis are: the shot diameter, shot speed, number of shots at a given time (coverage) and target material. The analysis is carried out for two different materials, namely, steel and aluminum. An Explicit finite element code (ABAQUS) is used to perform this task. These parameters have different effects on the resulting residual profile and the results of the study showed that by adjusting these parameters, the most effective residual stress profile could be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.