Abstract
A convenient homogeneous electrochemical thrombin sensor based on potential-assisted Au-S deposition and a dual signal amplification strategy was established in this study. Potential-assisted Au-S deposition does not require the modification of the gold electrode, thus eliminating the tedious pre-modification of the electrode. To better amplify the output signal, both ends of the signal hairpin probes were modified with a new electroactive substance, tetraferrocene, which was synthesized by the authors. Thrombin was immediately hybridized with a thiol-modified probe to open the stem-loop structure. After chain hybridization, thrombin was replaced and participated in the next round of the reaction; thus, the cascade amplification of the signal was realized. The hybrid chain formed an Au-S deposition under potential assistance, and the electrochemical signal of tetraferrocene could then be measured through differential pulse voltammetry (DPV) and consequently used for the quantitative detection of target thrombin. In addition, the detection limit of thrombin was as low as 0.06 pmol/L, and the detection of common interfering proteins was highly specific.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.