Abstract

SummarySurveillance has become a fairly common practice with the global boom in “smart cities”. How to efficiently store and manage the vast quantities of surveillance data is a persistent challenge in terms of analyzing social security problems. Developing data compression technology under the analytic requirements of surveillance data is the key to solving the storage problem. Criminal investigation demands the quality preservation of sensitive objects, typically pedestrians, human faces, vehicles, and license plates; however, the analytical value of surveillance data is rapidly lost as the compression ratio increases. In this paper, we propose a sensitive object‐oriented regions of interest‐based coding strategy for preserving the analytical value of surveillance data. In the proposed method, instead of generating a saliency map based on human visual perception, we consider saliency as a set of characteristics important for object detection and recognition. By making this modification, almost all sensitive objects necessary in a criminal investigation are assigned high saliency value rather than only one or two salient regions. Motions in the temporal domain are integrated to place emphasis on moving objects, namely moving sensitive objects, which then gain the highest saliency. Finally, a saliency‐based rate control algorithm embedded in High Efficiency Video Coding is used to maintain the quality of sensitive objects in the encoded video under a fixed bitrate. Experiments were conducted on two analytical indexes: Feature similarity and object detection accuracy. The results showed that by achieving the same feature similarity and object detection accuracy, our method can save 20% and 40% bitrate over High Efficiency Video Coding, respectively, for the storage of big surveillance data. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.