Abstract

BackgroundDiabetes and diabetic wound management have always been urgent issues for global healthcare. In the demand for blood glucose monitoring and wound management, phenylboronic acid (PBA)-based glucose biosensors are effective assistance due to their excellent glucose specificity, high sensitivity, and response stability. Nevertheless, PBA-based glucose biosensors still have challenges in terms of wide linearity and large deformation requirements. Therefore, it is necessary to develop PBA-based glucose biosensors with satisfactory mechanical properties, high response sensitivity, excellent stability, and wide linearity. ResultsIn this work, a glucose-responsive PBA-based biosensor was successfully synthesized for the first time. The sensor materials exhibited excellent mechanical properties with an elongation at break reached up to 1000%, and the healing efficiency was over 90% within 30 min at 45 °C. Furthermore, the biosensor exhibited exceptional electromechanical responsiveness, stability, high sensitivity, and wide linearity due to the specificity of phenylboronic acid to glucose and the construction of a special HCNT/PEDOT:PSS dual conductive structure. In addition, the assembled biosensor displayed remarkable glucose, pH and temperature responses, exhibiting a linear response to glucose concentration range from 0.20 mM to 2.0 mM, with a sensitivity coefficient of 47.11 mA mM−1 and regression coefficient of 0.942. Moreover, the sensor materials showed satisfactory cytocompatibility, hemocompatibility, and antibacterial properties against Escherichia coli and Staphylococcus aureus. SignificanceFor the first time, a dual conductive structural glucose biosensor based on PBA-based copolymer was synthesized. In addition to excellent glucose sensitivity and response stability, the biosensor has a wide linearity range, excellent self-healing property, and satisfactory mechanical performance. As a promising substitute for non-enzymatic glucose biosensors, this new material with special structure and characteristics would also be beneficial to wound management in diabetic patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call