Abstract

The authors have developed a sensitive spectrophotometric method for determination of sulfonamide derivatives such as sulfanilamide (SAA), sulfadiazine (SDZ), sulfacetamide (SCT) sulfamethoxazole (SMX), sulfamerazine (SMR), sulfadimethoxine (SDX), sulfamethiazole (SMT) and Sulfathiazole (STZ). This method is based on the Bratton-Marshall reaction, which involves the diazotization of sulfonamides with sodium nitrite under acidic conditions, followed by coupling with N-(1-naphtyl) ethylenediamine dihydrochloride (NED) to form a pink colored compound. Therefore, the Bratton-Marshall method was modified by optimizing the reaction conditions, which allows us to determine a low concentration range of sulfonamides compared to the reported methods. The limits of detection and quantification obtained were 0.019–0.05 and 0.06–0.16μgmL−1, respectively. In comparison with other reported methods using different coupling agents, the proposed method was found to be the most simple and sensitive for sulfonamides determination. In this paper, the modified method was successfully employed for the determination of sulfonamides in drinking water, seawater and pharmaceutical and veterinary formulations.The purpose of this work is to optimize and develop a simple method for extraction and concentration of sulfonamides present as residues in seawater and their quantification with the recommended spectrophotometric method. Solid phase extraction (SPE) of sulfonamides from seawater samples was evaluated using Oasis HLB cartridges (3mL, 540mg). The recovery efficiency was investigated in the sulfonamides concentration range comprised between 0.19 and 126ngmL−1. The ease of use of this extraction method makes it very useful for routine laboratory work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.