Abstract
In this work, an electrochemiluminescence (ECL) sensor chip for sensitive detection of thrombin (TB) was prepared using a screen-printed electrode (SPE) as a working electrode and an aptamer as a specific recognition moiety. To produce an ECL sensor chip, a layer of pL-Cys was immobilized on the surface of the SPE using the cyclic voltammetry scanning method. A layer of gold nanoparticles (AuNPs) was assembled through an Au-S bond and hairpin DNA was further immobilized on the electrode surface. Ru(bpy)2 (mcpbpy)2+ , as a luminescent reagent, was covalently bound to single-stranded DNA (ssDNA) to prepare a luminescence probe ssDNA-Ru. The probe was hybridized with TB aptamer to form a capture probe. In the presence of TB, the TB aptamer in the capture probe bound to TB, causing the release of ssDNA-Ru that could bind to hairpin DNA on the electrode surface. The Ru(II) complex as a luminescent reagent was assembled onto the electrode, and pL-Cys was used as a co-reactant to enhance the ECL efficiency. The ECL signal of the sensor chip generated based on the above principles had a linear relationship with log TB concentration at the range 10 fM to1 nM, and the detection limit was 0.2 fM. Finally, TB detection using this method was verified using real blood samples. This work provides a new method using an aptamer as a foundation and SPE as a material for the detection of biological substances.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Luminescence : the journal of biological and chemical luminescence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.