Abstract

A new method for 3H-labeling of native collagen and a specific microassay for collagenase activity are presented. Acid-soluble type I collagen derived from rat tail tendons was reacted with pyridoxal phosphate and then reduced with NaB 3H 4 to yield [ 3H]collagen with a specific activity of more than 10 μCi/mg. With respect to rate of hydrolysis, trypsin susceptibility, and gelling properties this collagen compares favorably with biosynthetically labeled preparations. It was shown that chemical labeling procedures such as this, or N-acetylation with acetic anhydride, do not adversely affect properties of collagen which are important for its use as substrate in specific assays. The microassay employs 50-μl [ 3H]collagen gels (1 mg/ml) dispensed in microtest plates. At 36°C this assay combines rapid rate of hydrolysis with low trypsin susceptibility. As little as 1 ng of clostridial collagenase activity can be measured reproducibly. The high specific activity of the [ 3H]collagen allowed us to explore microassay conditions employing minute quantities of substrate in solution. These studies indicated that native type I collagen whether labeled or not, is cleaved in the helical region by trypsin at subdenaturation temperatures. It was concluded that, in order to remain specific, collagenase assays with collagen in solution as with collagen in fibrils must be performed at 10–12°C below the denaturation temperature, i.e., at 35–37°C with collagen gels and 27–29°C with collagen in solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.