Abstract

We have developed a sensitive chemiluminescent (CL) assay for cysteine. It is based on the use of water-soluble and fluorescent silver nanoclusters (Ag NCs) which are found to be able to strongly enhance the weak CL signal resulting from the redox reaction between Ce(IV) ion and sulfite ion. This enhancement is inhibited by cysteine under appropriate conditions. Taking advantage of this specific CL inhibition, a novel CL method for the sensitive and selective detection of cysteine was developed. This effect is interpreted in terms of an electronic energy transfer from excited state intermediate sulfur dioxide (originating from the CL reaction between Ce(IV) and sulfite ions) to the Ag-NCs. The latter become electronically excited and thus can act as a new source of emission. The method was applied to the determination of cysteine in the range from 5.0 nM to 1.0 μM, with a detection limit at 2.5 nM (S/N = 3).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call