Abstract

A sensitive and specific CYP cocktail assay for simultaneous measurement of the activities of major human cytochrome P450 enzymes (CYP1A2 (phenacetin), CYP3A4/5 (midazolam), CYP2C9 (diclofenac), CYP2C19 (S-mephenytoin) and CYP2D6 (dextromethorphan)) in primary cultures of human hepatocytes, was developed and validated using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Hepatocyte incubation medium was processed by a solid phase extraction (SPE) using Oasis SPE extraction cartridges prior to chromatography. The metabolites derived from each of the substrates were simultaneously quantitated using the corresponding stable isotope-labeled internal standards by a positive electrospray ionization mode using multiple reactions monitoring with a single eight minute run. The mean accuracy was in the range of 98–114%. The interday and intraday precision over the concentration ranges evaluated for all the analytes were lower than 15%, and 14%, respectively. All the generated metabolites were stable under the conditions used for sample analysis. Additionally, the interaction of a cocktail substrate on other CYP substrates was also analyzed. Due to substantial inter-substrate interaction, chlorzoxazone (CYP2E1) and bupropion (CYP2B6) were removed from the initial seven probes CYP cocktail assay. Therefore, the final CYP cocktail assay consisting of five probes provides a robust method to simultaneously measure activities of CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4/5 in primary cultures of human hepatocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call