Abstract

Ocular administration of the beta (β)-adrenergic receptor agonist JP-49b prevents retinopathy-like damage in a preclinical rat model of diabetes. Importantly, JP-49b did not induce characteristic β-adrenergic agonist-related side effects (e.g., left ventricular damage), which led to the hypothesis that JP-49b systemic exposure was minimal following ocular administration. To test this hypothesis, a sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed to study the preclinical pharmacokinetics of JP-49b in rats. Animals received either a single periocular or intravenous injection of JP-49b (10mg/kg) and plasma and tissue samples were obtained. JP-49b and fenoterol hydrobromide (internal standard, IS) were isolated by liquid-liquid extraction and extracts were analyzed by reversed-phase liquid chromatography on a C18 column using a gradient elution (acetic acid in water and methanol). A triple quadrupole mass spectrometer operating in the positive electrospray ionization mode with multiple reaction monitoring was used to detect JP-49b and IS transitions of m/z 346.4→195.1 and 304.1→134.9. The method was validated for selectivity, linearity, accuracy, and precision in rat vitreous humor, tissue homogenates, and plasma. Following intravenous administration, JP-49b was found to have a rapid clearance (36±5.8L/h/kg), high volume of distribution (244±51.5L/kg) and a terminal half-life of 4.8±1.6h. JP-49b was rapidly absorbed and extensively distributed into ocular tissue following topical administration. However, JP-49b was undetectable in heart tissue 24h after ocular administration. High local drug concentrations coupled with minimal systemic exposure following ocular administration supports further testing of JP-49b as a localized therapy for diabetic retinopathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call