Abstract

A semiphenomenological droplet model, which corrects for the macroscopic surface tension and monomer–monomer interactions from real gas behavior (second virial coefficient) and for the correlation between the mean surface area of a cluster and the number of molecules constituting the cluster over all ranges of temperature below the critical point, is proposed by modifying Fisher’s droplet theory of condensation. A steady-state nucleation rate equation is derived and compared with expansion and diffusion cloud chamber data for a variety of substances. An overall good agreement is achieved for the range of temperatures investigated in contrast to comparison with the classical nucleation rate equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.